🍪
This website uses own and third-party cookies to improve media features and optimize navigation. If you continue navigating, we consider you accept its use. More information

Changes

Jump to: navigation, search
no edit summary
{{ANEEtiqueta|palabrasclave=pandemic, covid19, COVID-19 cases, social vulnerability, vulnerability to COVID-19, census sections|descripcion= Cartographic analysis of synthetic vulnerability index in Barcelona and Madrid|url=valor}}{{ANEObra|Serie=Monographs from the National Atlas of Spain|Logo=[[File:Logo Monografía.jpg|left|50x50px|link=]]|Título=The COVID-19 pandemic in Spain|Subtítulo=First wave: from the first cases to the end of June 2020|Año=2021|Contenido=New content}}
{{ANENavegacionSubcapitulo(monografía COVID-19)|estructura temática=Estructura temática|seccion=[[The COVID-19 pandemic in Spain|The COVID-19 pandemic in Spain]]|capitulo=[[Different spatial behaviours|Different spatial behaviours]]|subcapitulo=Synthetic vulnerability index in Barcelona and Madrid}}
{{ANENavegacionHermanosUltimo|anterior=[[Málaga]]}}
Five social and economic variables were selected to develop a synthetic vulnerability index for Barcelona and Madrid: non Spanish population, illiterate or uneducated population, average income per capita, unemployed and social welfare beneficiaries. Data were sourced from the National Statistics Institute (experimental statistics) and the statistics portals from Madrid and Barcelona.
 
The economic variables were chosen to take into account citizens with lower income, unemployed and those in in-work poverty. Immigrants and illiterate or uneducated people are the groups potentially most exposed to poverty, as is confirmed in the VIII Foessa Report: ''Exclusion and social development in Spain 2019 (Exclusión y desarrollo social en España 2019)'', and the Oxfam Intermón publication (2020) ''A fair reconstruction is possible and necessary. This is not the time for austerity; let us choose dignity (Una reconstrucción justa es posible y necesaria. No es momento para la austeridad, elijamos dignidad)''. A long-lasting lack of income leads to depending on social welfare benefits. These variables have been included and assessed in important studies on vulnerability, such as the ''Atlas of Urban Vulnerability (Atlas de la Vulnerabilidad Urbana) and the Urban Analysis of Vulnerable Neighbourhoods in Spain (Análisis urbanístico de Barrios Vulnerables en España)'', published by the Ministry of Development (Ministerio de Fomento, 2012, 2015).
{| cellspacing="0" cellpadding="0" style="margin-top: 0; margin-right: 0px; margin-bottom: 0em; margin-left: 0px; float:right; width:350px"
| style="vertical-align: top; border-style: solid; border-width: 1px; border-color: #ffffff; background-color:#ffffff" |
|}
|}
The economic variables were chosen to take into account citizens with lower income, unemployed and those in in-work poverty. Immigrants and illiterate or uneducated people are the groups potentially most exposed to poverty, as is confirmed in the VIII Foessa Report: ''Exclusion and social development in Spain 2019 (Exclusión y desarrollo social en España 2019)'', and the Oxfam Intermón publication (2020) ''A fair reconstruction is possible and necessary. This is not the time for austerity; let us choose dignity (Una reconstrucción justa es posible y necesaria. No es momento para la austeridad, elijamos dignidad)''. A long-lasting lack of income leads to depending on social welfare benefits. These variables have been included and assessed in important studies on vulnerability, such as the ''Atlas of Urban Vulnerability (Atlas de la Vulnerabilidad Urbana) and the Urban Analysis of Vulnerable Neighbourhoods in Spain (Análisis urbanístico de Barrios Vulnerables en España)'', published by the Ministry of Development (Ministerio de Fomento, 2012, 2015).
 
Once the information was compiled and processed, a synthetic vulnerability index was developed using the principal component analysis technique. Variables were displayed in rows and principal components in columns. Ideally, each principal component relates positively to a few variables (with correlation coefficients close to +1 or -1) and poorly to the other variables (with coefficients close to 0). In this case, of the two principal components obtained, the first was considered the most representative one and it was therefore selected. Lastly, the results were transferred to a geographical information system and sorted using the natural breaks classification method.
 
[[File:Barcelona Synthetic-vulnerability-index.-City-of-Barcelona 2017 map 18011 eng.jpg||left|thumb|300px|Map: Synthetic vulnerability index. City of Barcelona. 2017. Barcelona. [//centrodedescargas.cnig.es/CentroDescargas/busquedaRedirigida.do?ruta=PUBLICACION_CNIG_DATOS_VARIOS/aneTematico/Barcelona_Synthetic-vulnerability-index.-City-of-Barcelona_2017_map_18011_eng.pdf PDF]. [//centrodedescargas.cnig.es/CentroDescargas/busquedaRedirigida.do?ruta=PUBLICACION_CNIG_DATOS_VARIOS/aneTematico/Barcelona_Indice-de-vulnerabilidad.-Ciudad-de-Barcelona_2017_mapa_18011_spa.zip More information].]]
Medical mapping is a key tool for visualising disease spreading, managing epidemiological crises and making decisions. The COVID-19 pandemic compels urban studies to be reformulated. It has breathed new life into old debates on unsolved urban issues, such as inequality in cities; a subject which seemed unthinkable in 21st-century urban discussion until recently. Indeed, the disease is proving to be a significant and telling indicator of urban contrasts. A long-term neglect of the universal human need for shelter, health and safety has made lower-income neighbourhoods much more vulnerable to the COVID-19 pandemic, not only in terms of health but also in relation to a loss of income, increased unemployment rates, weaker social protection, etc. Growing poverty and rising socio-spatial inequality on various scales are taking shape into what is known as spatial injustice. The assumption that poverty and scarcity are causing more infections and victims amongst the most vulnerable is indeed feasible (González and Piñeira, 2020).
 
[[File:Madrid Synthetic-vulnerability-index.-City-of-Madrid 2017 map 18012 eng.jpg||left|thumb|300px|Map: Synthetic vulnerability index. City of Madrid. 2017. Madrid. [//centrodedescargas.cnig.es/CentroDescargas/busquedaRedirigida.do?ruta=PUBLICACION_CNIG_DATOS_VARIOS/aneTematico/Madrid_Synthetic-vulnerability-index.-City-of-Madrid_2017_map_18012_eng.pdf PDF]. [//centrodedescargas.cnig.es/CentroDescargas/busquedaRedirigida.do?ruta=PUBLICACION_CNIG_DATOS_VARIOS/aneTematico/Madrid_Indice-de-vulnerabilidad.-Ciudad-de-Madrid_2017_mapa_18012_spa.zip More information].]]
Vulnerability in Barcelona and Madrid is particularly evident in the city outskirts, especially in neighbourhoods that were raised during the years of strong economic boost back in the 1960s, which are nowadays typified by high levels of social housing, high population densities and a drift to serve as a place of residence for immigrants. In Barcelona, the social divide lies between a more vulnerable north and south and a more wealthy west. In Madrid, the pattern is rather south-north. For their part, the historical city centres and the 19th-century expansions are areas of scant vulnerability. High rates of COVID-19 infections were limited in historical city centres to very small and specific old areas that have not yet been restored or gentrified, such as El Raval neighbourhood in Barcelona. In short, the most vulnerable areas in Madrid and Barcelona were also the areas to record the highest cumulative incidence of COVID-19 cases.
<div><ul style="text-align: left; float:left; margin-left:0px; margin-right:0px"><li style="display: inline-block; vertical-align:top">[[File:Logo Monografía.jpg||left|thumb|300px|Map: Synthetic vulnerability index. City of Barcelona. 2017. Barcelona. [//centrodedescargas.cnig.es/CentroDescargas/busquedaRedirigida.do?ruta=PUBLICACION_CNIG_DATOS_VARIOS/aneTematico/Europa_Densidad-de-poblacion-en-la-Union-Europea_2019_mapa_18193_spa.pdf PDF]. [//centrodedescargas.cnig.es/CentroDescargas/busquedaRedirigida.do?ruta=PUBLICACION_CNIG_DATOS_VARIOS/aneTematico/Europa_Densidad-de-poblacion-en-la-Union-Europea_2019_mapa_18193_spa.zip Datos].]]</li><li style="display: inline-block; vertical-align: top">[[File:Logo Monografía.jpg||left|thumb|300px|Map: Synthetic vulnerability index. City of Madrid. 2017. Madrid. [//centrodedescargas.cnig.es/CentroDescargas/busquedaRedirigida.do?ruta=PUBLICACION_CNIG_DATOS_VARIOS/aneTematico/Europa_Densidad-de-poblacion-en-la-Union-Europea_2019_mapa_18193_spa.pdf PDF]. [//centrodedescargas.cnig.es/CentroDescargas/busquedaRedirigida.do?ruta=PUBLICACION_CNIG_DATOS_VARIOS/aneTematico/Europa_Densidad-de-poblacion-en-la-Union-Europea_2019_mapa_18193_spa.zip Datos].]]</li> </ul></div>
The index developed depicts Barcelona as a city where high rates of vulnerability are observed in two areas: first, the neighbourhoods in the north (''Torre Baró, Ciutat Meridiana, Canyelles, Les Roquetes'') and some in the northeast (''Bon Pastor''), where a high number of immigrants live; second, the area to the south of the city, where the harbour and La Barceloneta neighbourhood lie. These areas registered a cumulative incidence of over 500 cases per 100,000 inhabitants (February-June 2020) and sometimes even over 1,000 (the maximum considered). By contrast, the lowest figures in vulnerability were recorded in census sections to the west of the city (Pedralbes and Sarrià), much of the Eixample and those bordering the northern coastline (''Vila Olímpica del Poblenou, Diagonal Mar and Front Marítim del Poblenou''). A study on the amount of cases in these less vulnerable areas reveals that they registered the lowest incidence rates of COVID-19 in the whole city of Barcelona, with under 500 cases per 100,000 inhabitants.
{{ANEAutoria|Autores= Jesús M. González Pérez y María José Piñeira Mantiñán}}
{{ANEBibliografia|Texto=
*BENAVIDES, L. et al. (2020): ''Una reconstrucción justa es posible y necesaria. No es momento para la austeridad, elijamos dignidad''. Madrid, Oxfam Intermón. Disponible enAvailable in: https://www.observatoriorealidadsocial.es/es/documentacion/Record/553245
*EPData (2021): «Población especialmente vulnerable». Disponible en: https://www.epdata.es/datos/poblacion-especialmente-vulnerable-estadistica-accentur-fedea-juntos-empleo/87/espana/106
*FERNÁNDEZ MAÍLLO, G. (2019), coord.: ''VIII Informe Foessa Exclusión y desarrollo social en España. Madrid, Fundación Foessa''. Disponible enAvailable in: https://www.foessa.es/main-files/uploads/sites/16/2019/06/Informe-FOESSA-2019_web-completo.pdf*GONZÁLEZ PÉREZ, J. M. y PIÑEIRA MANTIÑÁN, M. J. (2020): «La ciudad en rebelión. Vulnerabilidades urbanas y nuevos gobiernos en la ciudad», Boletín de la Asociación de Geógrafos Españoles, nº 87. Disponible enAvailable in: https://bage.age-geografia.es/ojs/index.php/bage/issue/view/126
*MINISTERIO DE FOMENTO (2012): ''Atlas de la Vulnerabilidad Urbana''. https://www.mitma.gob.es/areas-de-actividad/arquitectura-vivienda-y-suelo/urbanismo-y-politica-de-suelo/observatorio-de-la-vulnerabilidad-urbana/atlas-de-la-vulnerabilidad-urbana/atlas-de-las-vulnerabilidad-urbana-en-espan%CC%83a
*MINISTERIO DE FOMENTO (2015): ''Análisis urbanístico de Barrios Vulnerables en España''. https://www.mitma.gob.es/areas-de-actividad/arquitectura-vivienda-y-suelo/urbanismo-y-politica-de-suelo/observatorio-de-la-vulnerabilidad-urbana/analisis-urbanistico-de-barrios-vulnerables}}
1,098
edits

Navigation menu